

Problem 1.

Part A. WLOG assume that $l = 1$, otherwise we just send each bit separately. For each $i \in \{1, \dots, t\}$, the receiver chooses $b = 1$ if $i = x$ and $b = 0$ otherwise; the sender chooses $\hat{m}_0 = 0$ and $\hat{m}_1 = m_i$. Then the receiver uses the 1-out-of-2 OT to get $v_i = \hat{m}_b$. The result is $v_1 \vee \dots \vee v_t$.

To simulate the view of sender, we just call $\text{OT.Sim}_S((0, m_i), \perp)$ for $i \in \{1, \dots, t\}$. To simulate the view of receiver, we just call $\text{OT.Sim}_T(0, 0)$ for $i \neq x$ and $\text{OT.Sim}_T(1, m_x)$ for $i = x$. Therefore the scheme is secure.

Part B. The protocol goes like this:

- The sender prepares t random messages r_1, \dots, r_t uniformly sampled from $\{0, 1\}^\ell$.
- The given 1-out-of-2 OT protocol is used for t rounds. In round i , the sender prepares the following two inputs for the OT protocol:

$$\left(r_i, \bigoplus_{j < i} r_j \oplus m_i \right)$$

- If the receiver wants to learn m_x , he or she requires the former message in the first $x - 1$ rounds, and the later message in round x , which means he or she can learn

$$r_1, \dots, r_{x-1}, \bigoplus_{j < x} r_j \oplus m_x$$

helping him or her reveal m_x .

The correctness for this protocol is obvious. The view of the sender can be simulated by t OT.Sim_S , which runs OT.Sim_S on t pairs of inputs prepared by the sender independently.

The view of the receiver can also be simulated by t OT.Sim_R . In the first $x - 1$ rounds, the (semi-honest) receiver can only require the former message, and t OT.Sim_R simply samples $r \leftarrow \$$ and returns $\text{OT.Sim}_R(r, 0)$ to the receiver. Of course it should remember all r -s. When round x comes, the receiver requires the later message, the t OT.Sim_R will return $\text{OT.Sim}_R(m_x \oplus R, 1)$, where R denotes the XOR sum of all r -s. In the remaining rounds, it simply returns $\text{OT.Sim}_R(\$, b)$ for the require bit b from the receiver. Thus, the protocol is secure against semi-honest sender and semi-honest receiver.

Problem 2.

Part A, Solution 1. Define f as $f((k_1, k_2), x) = f_2(k_2, f_1(k_1, x))$, where $f_1 : \{0, 1\}^{\ell_{\text{key}1}} \times \{0, 1\}^* \rightarrow \{0, 1\}^n$ is a UHF and $f_2 : \{0, 1\}^{\ell_{\text{key}2}} \times \{0, 1\}^n \rightarrow \{0, 1\}^{2n}$ is a PRF. (In short, we want $f : \{0, 1\}^{\ell_{\text{key}}} \times \{0, 1\}^* \rightarrow \{0, 1\}^{2n}$ be a PRF for arbitrary length input.)

The output of f is interpreted as two field elements in \mathbb{F}_{2^n} .

Gen($1^n, i$) samples a random PRF key for f .

MAC((k_1, \dots, k_n), m) computes $(x_i, y_i) = f(k_i, m)$ for each $i \in [n]$, finds the degree- $(n - 1)$ polynomial t such that $t(x_i) = y_i$ for all $i \in [n]$.

Verify(i, k, m, t) computes $(x, y) = f(k, m)$, and accepts the tag if and only if $t(x) = y$.

Part A, Solution 2. Define f as $f((k_1, k_2), x) = f_2(k_2, f_1(k_1, x))$, where $f_1 : \{0, 1\}^{\ell_{\text{key}1}} \times \{0, 1\}^* \rightarrow \{0, 1\}^n$ is a UHF and $f_2 : \{0, 1\}^{\ell_{\text{key}2}} \times \{0, 1\}^n \rightarrow \{0, 1\}^{n(n+1)}$ is a PRF. (In short, we want $f : \{0, 1\}^{\ell_{\text{key}}} \times \{0, 1\}^* \rightarrow \{0, 1\}^{n(n+1)}$ be a PRF for arbitrary length input.)

The output of f is interpreted as a dimension- $(n + 1)$ vector in $(\mathbb{F}_{2^n})^{n+1}$.

Gen($1^n, i$) samples a random PRF key for f .

MAC((k_1, \dots, k_n), m) computes $v_i = f(k_i, m)$ for each $i \in [n]$, a vector t which is orthogonal to all of v_1, \dots, v_n .

Verify(i, k, m, t) computes $v_i = f(k, m)$, and accepts the tag if and only if v_i is orthogonal to t .

Part B. For one-time security, f_2 can be replaced by a 2-universal hash function.

Problem 3.

Use the following protocol to compute a function f

- Let $(\text{Gen}, \text{MAC}, \text{Verify})$ be a one-time MAC scheme. The i -th party samples key $k_i \leftarrow \text{Gen}(1^\lambda)$.
- Use a PKO secure protocol to compute f' , which is defined as

$$f'((x_1, k_1), \dots, (x_n, k_n)) = ((y_1, \text{MAC}(k_1, y_1), \dots, (y_n, \text{MAC}(k_n, y_n))),$$

where $(y_1, \dots, y_n) = f(x_1, \dots, x_n)$. By assumption, such PKO secure protocol exists, denote the protocol by Π' . All honest parties learn (\hat{y}, \hat{t}) from Π' .

- The i -th party outputs \hat{y} if $\text{Verify}(k_i, \hat{y}, \hat{t})$ accepts. Otherwise, the i -th party aborts (i.e., outputs \perp).