
Fundamentals of Cryptography: Problem Set 11
Due Wednesday Dec 24, 3PM

Collaboration is permitted (and encouraged); however, you must write up your own
solutions and acknowledge your collaborators.

If a problem has 0pt, it will not be graded.

Problem 1 (5pt) 1-out-of-t Oblivious Transfer 1-out-of-t OT is a natural gen-
eralization of the standard oblivious transfer. In 1-out-of-t OT, the sender is given t
equal-length messages m1, . . . ,mt ∈ {0, 1}ℓ, the receiver is given an index x ∈ {1, . . . , t},
the protocol let the receiver learn mx, without revealing any other information.
Correctness After the protocol, the receiver always output mx.

Receiver’s Security against Semi-honest Sender The sender doesn’t learn anything
about the receiver’s index. Let ViewS((m1, . . . ,mt), x) denote the view of the sender
when the sender is given t messages m1, . . . ,mt, the receiver is given an index
x ∈ {1, . . . , t}. There exists an efficient simulator SimS such that

ViewS((m1, . . . ,mt), x) ≈ SimS(m1, . . . ,mt) .

The security is perfect, statistical, or computational, if the above two distributions
are perfectly, statistically, or computationally indistinguishable.

Sender’s Security against Semi-honest Receiver The receiver doesn’t learn any-
thing about the other messages of the sender. Let ViewR((m1, . . . ,mt), x) denote
the view of the receiver when the sender is given t messages m1, . . . ,mt, the receiver
is given an index x ∈ {1, . . . , t}. There exists an efficient simulator SimR such that

ViewR((m1, . . . ,mt), x) ≈ SimR(mx, x) .

The security is perfect, statistical, or computational, if the above two distributions
are perfectly, statistically, or computationally indistinguishable.

Show how to construct a (semi-honest) 1-out-of-t OT protocol based on a given 1-out-
of-2 OT (i.e., the standard OT) protocol. You can use OT.SimS and OT.SimR to denote
the simulators of the 1-out-of-2 OT protocol.

Problem 2 (6pt) Multi-key MAC Your task is to construct a multi-key MAC
scheme. Such a scheme is a tuple of three algorithms (Gen,MAC,Verify).

Gen(1n, i) generates a key k.
MAC((k1, . . . , kn),m) takes n keys and a message, outputs a tag t.
Verify(i, k,m, t) takes an index, a key, a message and a tag, outputs a bit

indicating acceptance or rejection.

1



A multi-key MAC scheme should be correct and unforgeable: Correctness means any
PPT adversary wins the following correctness game with at most negl(n) probability.

The adversary is given 1n and outputs m. For each 1 ≤ i ≤ n, key ki
is generated by Gen(1n, i). Compute a tag t ← MAC((k1, . . . , kn),m). The
adversary wins if ∃i,Verify(i, ki,m, t) rejects.

Unforgeability means any PPT adversary A wins the following adaptive chosen message
attack game with at most negl(n) probability.

1. Keys k1, . . . , kn are independently generated by Gen(1n, 1), . . . ,Gen(1n, n).

2. The adversary A is given input 1n and oracle access to MAC((k1, . . . , kn), ·). That
is, if the adversary chooses mj in its j-th oracle query, the adversary will receive
tag tj ← MAC((k1, . . . , kn),mj). Eventually, the adversary outputs (m, t, i).

3. The adversary wins if 1) Verify(i, ki,m, t) accepts, and 2) (m, t) ̸= (mj, tj) for all j.

Part A. Your task is to construct such a multi-key MAC scheme and briefly prove its
security. As for computational assumption(s), you can use OWF, OWP, PRG,
PRF, PRP, (keyed or keyless) CRHF in your construction.

Part B. If you cannot solve part A, you may instead construct a one-time multi-key
MAC scheme. The definition is the same, except that the adversary A can only
make one oracle query in the unforgeability game.
(For one-time security, computational assumptions are unnecessary, though you can
still use them in your construction.)

Problem 3 (6pt) PKO Implies Security with Selective Abort In this problem,
we consider a weaker security notion “privacy with knowledge of outputs (PKO)”. In the
new security notion, the adversary learns no extra information compare to an honest
execution, but the adversary can choose an incorrect output for each honest party.

Assume that, any f ∈ P/poly has an efficient multi-party computation protocol
which achieves (computational) PKO security against up to t corruptions. Show that,
for any f ∈ P/poly, there is also an efficient multi-party computation protocol which
achieves (computational) security with selective abort against up to t corruptions.

Remark: In the above statement, “security with selective abort” can be easily strengthed
to “security with abort”, using one-time multi-key MAC.

Malicious Security Definitions An n-party MPC protocol computing a function f
is computationally (resp. perfectly/statistically) secure against up to t active corruptions,
if for any p.p.t. (resp. unbounded) environment E , adversary A, for any set S ⊆ [n] of at
most t corrupted parties, there exists a p.p.t. (resp. unbounded) simulator S, such that
the view of the environment in the real world and the ideal world are computationally
(resp. perfectly/statistically) indistinguishable.

There are several different level of security definitions, depending on how the ideal
functionality is define.

Full Security = Guaranteed Output Delivery (GOD) Security: Upon receiving
xi from every party Pi, compute (y1, . . . , yn) = f(x1, . . . , xn), send yi to Pi.

2



real world:

P1 P2 P3 P4 P5

environment E

adversary A

Honest Pi receives input xi from E , exe-
cutes the protocol, sends the protocol’s
output yi to E .
All corrupted parties are controlled by
the adversary. They may interacts arbi-
trarily with E and honest parties.

ideal world:

P1 P2 P3 P4 P5

environment E

simulator S

ideal functionality F

Honest Pi receives input xi from E , for-
wards xi to F , receives yi from F sends
yi to E .
All corrupted parties are controlled by
the simulator. Each corrupted party Pi

sends xi to F and receives yi from F .
They may interacts arbitrarily with E .

Security with Abort: Upon receiving xi from every party Pi, compute (y1, . . . , yn) =
f(x1, . . . , xn), send yi to Pi if Pi is corrupted.
Wait for an signal babort ∈ {0, 1} from the adversary (= simulator S). If babort = 1,
send ⊥ to all honest parties; otherwise send yi to Pi.

Security with Selective Abort: Upon receiving xi from every party Pi, compute (y1, . . . , yn) =
f(x1, . . . , xn), send yi to Pi if Pi is corrupted.
For each honest Pi, wait for signals babort,i ∈ {0, 1} from the adversary (= simulator
S). If babort,i = 1, send ⊥ to Pi; otherwise send yi to Pi.

Privacy with Knowledge of Output (PKO) Security: Upon receiving xi from ev-
ery party Pi, compute (y1, . . . , yn) = f(x1, . . . , xn), send yi to Pi if Pi is corrupted.
For each honest Pi, wait for message ŷi ∈ {0, 1} from the adversary (= simulator
S). If ŷi = ⊤, send yi to Pi; otherwise send ŷi to Pi.

3


