Fundamentals of Cryptography: Problem Set 3

Due Wed Oct 15 3PM

Collaboration is permitted (and encouraged); however, you must write up your own solutions and acknowledge your collaborators.

If a problem has **0pt**, it will not be graded.

Problem 0 Read Section 7.1, 7.2, 7.3 of "Introduction to Modern Cryptography (2nd ed)" by Katz & Lindell.

If you are curious about how to construct PRG from OWF, you may read "Pseudorandom Generators from One-Way Functions: A Simple Construction for Any Hardness" by Thomas Holenstein.

Problem 1 (0pt) Concentration Inequalities This problem recaps a few useful probability bounds. They show how random variables "concentrate" around their means. Section A of "Introduction to Modern Cryptography (2nd ed)" may help you answer this question.

Part A (Markov's Inequality) Let X be a random variable over non-negative real numbers. Prove that, for any a > 0,

$$\Pr[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$
.

Part B (Chernoff Bound) Let $p \in [0,1]$ be a constant. Let X_1, \ldots, X_n be random variables that are sampled independently from Bern(p). That is, for each $i \in \{1,\ldots,n\}$, we have $X_i \in \{0,1\}$ and $Pr[X_i = 1] = p$.

- (1) Compute $\mathbb{E}[e^{t\sum_i X_i}]$ for any $t \in \mathbb{R}$.
- (2) Prove that,

$$\Pr\left[\frac{1}{n}\sum_{i}X_{i} \geq p + \varepsilon\right] \leq \frac{\mathbb{E}\left[e^{t\sum_{i}X_{i}}\right]}{e^{tn(p+\varepsilon)}},$$

for any t > 0.

(3) Optimize the above bound by choosing t wisely.

The optimized bound is call Chernoff bound, it should looks like

$$\Pr\left[\frac{1}{n}\sum_{i}X_{i} \ge p + \varepsilon\right] \le e^{-D(p+\varepsilon||p)\cdot n},$$

where $D(p+\varepsilon||p)$ is the notatino of KL divergence, and is defined as $D(p+\varepsilon||p) := (p+\varepsilon)\log(\frac{p+\varepsilon}{p}) + (1-p-\varepsilon)\log(\frac{1-p-\varepsilon}{1-p})$. Since $D(p+\varepsilon||p) \ge 2\varepsilon^2$, Chernoff bound can be relaxed to

$$\Pr\left[\frac{1}{n}\sum_{i}X_{i}\geq p+\varepsilon\right]\leq e^{-2\varepsilon^{2}n}$$
.

Part C (Chebyshev's Inequality) Let X be a random variable. Prove that

$$\Pr[|X - \mathbb{E}[X]| \ge a] \le \frac{\operatorname{Var}[X]}{a^2}$$

for any a > 0. Here $Var[X] := \mathbb{E}[(X - \mathbb{E}[X])^2]$ is the variance of X.

Let X_1, \ldots, X_n be random variables such that $\mathbb{E}[X_i] = p$ and $\operatorname{Var}[X_i] = \sigma^2$ for all i. We also assume that X_1, \ldots, X_n are pair-wise independent. Prove that

$$\Pr\left[\left|\frac{1}{n}\sum_{i}X_{i}-p\right|\geq a\right]\leq \frac{\sigma^{2}}{na^{2}}$$

for any a > 0.

Problem 2 (14pt) Assume f is a length-preserving OWF (i.e., |f(x)| = |x|). In each of the following cases, prove f' is a OWF, or show a counterexample.

Part A f'(x) := f(x) || f(f(x)).

Part B $f'(x) := x \oplus f(x)$.

Part C $f'(x) := f(x) || f(\bar{x})$, where \bar{x} denote the bit-wise NOT operation.

Part D f'(x) := f(G(x)), where G is a PRG that |G(s)| = |s| + 1.

Part E f'(x) := G(f(x)), where G is a PRG that |G(s)| = |s| + 1.

Part F $f'(x) := f(x || \underbrace{0 \dots 0}_{\text{log } n \text{ many}})$, where n = |x|.

Part G $f'(x) := (f(x))_{1:(n-\log n)}$, where n = |x|. That is, f'(x) outputs the first $n-\log(n)$ bits of f(x).

Problem 3 (6pt) Hardness Amplification of Weak OWFs For simplicity, we consider length-preserving weak OWF. $f: \{0,1\}^* \to \{0,1\}^*$ is a length-preserving weak OWF, if |f(x)| = |x| for any $x \in \{0,1\}^*$, and there exists a polynomial q, such that for any PPT \mathcal{A} , for any sufficiently large n,

$$\Pr_{\substack{x \overset{\$}{\leftarrow} \{0,1\}^n \\ \hat{x} \leftarrow \mathcal{A}(f(x))}} \left[f(\hat{x}) = f(x) \right] \le 1 - \frac{1}{q(n)}.$$

(Note the order of the quantifiers!)

Assume f is such a weak OWF. Define f' such that for $x_1, \ldots, x_m \in \{0, 1\}^n$,

$$f'(x_1 || \dots || x_m) = f(x_1) || \dots || f(x_m)$$

where m = m(n) is a polynomial on n. (m(n)) will be fixed later.)

We prove f' is a OWF by contradiction. Assume f' is not a OWF, then there exists PPT \mathcal{A}' , and polynomial p such that

$$\Pr_{\substack{x_1, \dots, x_m \leftarrow \{0,1\}^n \\ \hat{x}_1, \dots, \hat{x}_m \leftarrow \mathcal{A}'(f(x_1)||\dots||f(x_m))}} \left[f(\hat{x}_1) = f(x_1), \dots, f(\hat{x}_m) = f(x_m) \right] > \frac{1}{p(n)}$$

for infinitely many integer n.

Define \mathcal{A} as

$$\mathcal{A}(y) \quad \text{let } n = |y|, \text{ let } m = m(n)$$

$$\text{sample } i \stackrel{\$}{\leftarrow} \{1, \dots, m\}$$

$$\text{for all } j \neq i, \text{ sample } x_j \stackrel{\$}{\leftarrow} \{0, 1\}^n \text{ and let } y_j = f(x_j)$$

$$\text{let } y_i = y$$

$$\text{call } \hat{x}_1 \| \dots \| \hat{x}_m \leftarrow \mathcal{A}'(y_1 \| \dots \| y_m)$$

$$\text{if } f'(\hat{x}_1 \| \dots \| \hat{x}_m) = y_1 \| \dots \| y_m,$$

$$\text{output } \hat{x}_i$$

We say $x \in \{0,1\}^n$ is "good" if \mathcal{A} inverts f(x) with a good probability. Concretely, we define $x \in \{0,1\}^n$ is "good" if and only if

$$\Pr_{\hat{x} \leftarrow \mathcal{A}(f(x))} \left[f(\hat{x}) = f(x) \right] \ge \frac{1}{r(n)}$$

for a polynomial r(n). (r(n) will be fixed later.) If x is not "good", we say x is "bad".

Part A Prove that

$$\Pr_{\substack{x_1, \dots, x_m \in \{0,1\}^n \\ \hat{x}_1, \dots, \hat{x}_m \leftarrow \mathcal{A}'(f(x_1) \| \dots \| f(x_m))}} \left[f(\hat{x}_1) = f(x_1), \dots, f(\hat{x}_m) = f(x_m) \right] \\
\leq \frac{m^2}{r(n)} + \left(\Pr_{x \leftarrow \{0,1\}^n} [x \text{ is "good"}] \right)^m,$$

for any sufficiently large n.

Part B Choose polynomials m(n), r(n) properly, so that

$$\Pr_{x \leftarrow \{0,1\}^n}[x \text{ is "bad"}] \le \frac{1}{2q(n)}$$

for infinitely many n. (Note that, you can let r(n) depend on both p(n) and q(n); while m(n) can depend on q(n) and cannot depend on p(n).)

Part C Define A_{repeat} as

$$\mathcal{A}_{\text{repeat}}(y) \text{ let } n = |y|$$

$$\text{repeat the following for } n \cdot r(n) \text{ times}$$

$$\text{call } \hat{x} \leftarrow \mathcal{A}(y)$$

$$\text{if } f(\hat{x}) = y,$$

$$\text{output } \hat{x}$$

Show that $\mathcal{A}_{\text{repeat}}$ violates our assumptions on f.

The contradiction rules out our assumption. So f' must be a OWF.

Problem 4 (6pt) A PRF $F: \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\lambda}$ is called a *puncturable PRF* if

- There is a p.p.t. algorithm puncture, which takes a key, an input, and outputs a "punctured key".
- There is a p.p.t. algorithm eval, such that for any $x' \neq x$, we have $eval(k_{-x}, x') = F_k(x')$, where $k_{-x} \leftarrow puncture(k, x)$.
- If k, u are randomly sampled, $(k_{-x}, F_k(x))$ is indistinguishable from (k_{-x}, u) . (More formally, consider a security game: the distinguisher \mathcal{D} chooses x; the challenger samples random k, u, computes $k_{-x} \leftarrow \mathsf{puncture}(k, x)$, and sends
 - in case 0: $(k_{-x}, F_k(x))$, or
 - in case 1: (k_{-x}, u)

to the distinguisher. We require that for any p.p.t. distinguisher \mathcal{D} , the distinguisher cannot tell which case it is with non-negligible advantage.)

Your task is to construct a puncturable PRF.

Remark: A puncturable PRF F is called a private puncturable PRF if k_{-x} does not reveal x. Until 2017, we didn't know how to construct private puncturable PRF from standard assumptions.

Problem 5 (3pt, Exercise 4.8 from BS) Prove that, if $F : \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ satisfies either of the following homomorphism properties, then F is not a PRF.

Part A
$$F(k, x \oplus c) = F(k, x) \oplus c$$
 for all $k, x, c \in \{0, 1\}^n$.

Part B
$$F(k \oplus c, x) = F(k, x) \oplus c$$
 for all $k, x, c \in \{0, 1\}^n$.

Part C
$$F(k_1 \oplus k_2, x) = F(k_1, x) \oplus F(k_2, x)$$
 for all $k_1, k_2, x \in \{0, 1\}^n$.

Remark: In contrast to Part C, under well-received assumptions, there exist PRFs satisfying $F(k_1 +_1 k_2, x) = F(k_1, x) +_2 F(k_2, x)$, where the key space and the output space are interpreted as carefully-chosen groups, and $+_1$, $+_2$ are the corresponding group operations.