Problem 1.

The answer is (c).

MAC' is not a secure MAC. If the adversary repeatedly query the tag of some messages m, and gets tags $(r, \tau_1, \tau_2), (r', \tau'_1, \tau'_2)$. Then (r, τ_1, τ'_2) is a valid tag for $m \oplus r \oplus r'$.

Problem 2.

Part A. Encoder E is an efficient algorithm. Decoder D simply removes all leading 0's and the first 1.

For any $x \neq y$, we show that E(x) is not a prefix of E(y):

- If |x| > |y|, then E(x) is not a prefix of E(y) because E(x) is longer.
- If |x| = |y|, then E(x) is not a prefix of E(y) because |E(x)| = |E(y)| and $E(x) \neq E(y)$.
- If |x| < |y|, then E(x) is not a prefix of E(y) because the (|x| + 1)-th bit of E(x) is 1 and the (|x| + 1)-th bit of E(x) is 0.

Part B. A simple encoding satisfying the requirements is $E(x) = 0^{|\ell|} 1 ||\ell|| x$, where ℓ is the bit representation of |x|.

More generally, given any prefix-free encoding E, we can construct another prefix-free encoding $E'(x) = E(\ell) ||x|$.

Part C. There does not exist a prefix-free encoding E such that $|E(x)| = |x| + o(\log |x|)$. This can be proved by contradiction. Assume such encoding E exists, then there is a number $N \in \mathbb{N}$ such that $\forall x \in \{0,1\}^*, |x| > N \Longrightarrow |E(x)| \le |x| + \log |x|$. (A common mistake is missing N.)

Consider a random infinite-length binary string R. For any bit string $s \in \{0, 1\}^*$, the probability s is a prefix of R is $2^{-|s|}$. Because E is a prefix-free encoding, the events "E(x) is a prefix of R" and "E(x') is a prefix of R" are disjoint, for any distinct x, x'. So

$$1 \ge \sum_{x \in \{0,1\}^*} \Pr[E(x) \text{ is a prefix of } R] = \sum_{x \in \{0,1\}^*} 2^{-|E(x)|}.$$

This contradicts our assumption, since $\forall x \in \{0,1\}^*, |x| > N \Longrightarrow |E(x)| \le |x| + \log |x|$ implies

$$\sum_{x \in \{0,1\}^*} 2^{-|E(x)|} \ge \sum_{n > N} \sum_{x \in \{0,1\}^n} 2^{-|E(x)|} \ge \sum_{n > N} 2^n 2^{-n - \log n} = \sum_{n > N} \frac{1}{n} = +\infty$$

Part D. Let $\ell = |x| < 2^{\lambda}$. The first λ -bit block of E(x) encodes ℓ . Then append x to the encoding. Finally appends (at most $\lambda - 1$) 0s to the encoding so that the length is a multiple of λ .

The length of the encoding is less then $|x| + 2\lambda$, and one can easily verify it is a prefix-free encoding.

Problem 3.

Part A. First, we introduce a hybrid world which is similar to the real world, except PRF $F(k,\cdot)$ is replaced by a truly random function $f:\{0,1\}^{\lambda}\to\{0,1\}^{\lambda}$. Since F is a PRF, the hybrid world is indistinguishable from the real world.

It remains to prove that \tilde{F}_{CBC} (defined as follows) is indistinguishable from a random function under prefix-free querying.

$$\tilde{F}_{CBC}(m_1, m_2, \dots, m_{\ell}) := \begin{cases}
\tilde{f}(m_{\ell} \oplus \tilde{F}_{CBC}(m_1, m_2, \dots, m_{\ell-1})), & \text{if } \ell > 1 \\
f(m_1), & \text{if } \ell = 1
\end{cases}$$

$$= f(m_{\ell} \oplus f(m_{\ell-1} \oplus \dots f(m_2 \oplus f(m_1)) \dots)).$$

For any message $M = (m_1, m_2, \dots, m_{\ell})$. Define

$$C(M) = (m_1, \tilde{F}_{CBC}(m_1) \oplus m_2, \dots, \tilde{F}_{CBC}(m_1, m_2, \dots, m_{\ell-1}) \oplus m_\ell),$$

$$C_{tail}(M) = \tilde{F}_{CBC}(m_1, m_2, \dots, m_{\ell-1}) \oplus m_\ell,$$

i.e., the ℓ calls and the last call to f when computing $\tilde{F}_{CBC}(M)$. Let M_1, M_2, \ldots, M_t be the first t queries made by the adversary, define

$$C(M_1, \dots, M_t) = C(M_1) \cup \dots \cup C(M_t),$$

$$C_{\text{tail}}(M_1, \dots, M_t) = \{C_{\text{tail}}(M_1), \dots, C(M_t)\}.$$

We expect the following statements to hold,

 (A_t) There is no collision among the first t queries with overwhelming probability.

Given two messages $M = (m_1, \ldots, m_\ell)$, $M' = (m'_1, \ldots, m'_{\ell'})$, let $\mathcal{C}(M) = (t_1, \ldots, t_\ell)$, $\mathcal{C}(M') = (t'_1, \ldots, t'_{\ell'})$. We say there is a collision between M, M' if $t_i = t'_j$ and $(m_1, \ldots, m_i) \neq (m'_1, \ldots, m'_j)$ for some i, j.

We say there is no collision among the first t queries if there is no collision between M, M' for any $M, M' \in \{M_1, \ldots, M_t\}$.

- (B_t) Intermediate outputs of f are hidden from the adversary: the joint distribution of f(x) for any $x \in \mathcal{C}(M_1, \ldots, M_t) \setminus \mathcal{C}_{\text{tail}}(M_1, \ldots, M_t)$ is close to uniform conditioning on the adversary's view.
- (C_{t+1}) The distribution of $\tilde{F}_{CBC}(M_{t+1})$ is close to uniform conditioning on the adversary's view after the first t queries.

The statements can be proved by induction.

 $(A_t \Longrightarrow B_t)$ If there is no collision, the outputs of f(x) for all $x \in \mathcal{C}(M_1, \ldots, M_t)$ are i.i.d. uniform. The adversary only learns f(x) for all $x \in \mathcal{C}_{\text{tail}}(M_1, \ldots, M_t)$, which reveals no information about the rest of f(x).

 $(A_t + B_t \implies A_{t+1})$ Let $M = (m_1, \ldots, m_\ell)$ be the (t+1)-th query. Define i be the largest index such that (m_1, \ldots, m_i) is the prefix of a previous message. By the prefix-free requirement, (m_1, \ldots, m_i) does not equals M (i.e., $i < \ell$) or any previous message. Thus, together with the non-collision statement A_t , $\tilde{F}_{CBC}(m_1, \ldots, m_{i-1}) \oplus m_i \notin \mathcal{C}_{tail}(M_1, \ldots, M_t)$. By the statement B_t , the distribution of $\tilde{F}_{CBC}(m_1, \ldots, m_i)$ is close to uniform conditioning on the adversary after the first t queries. Thus despite the

adversary's strategy of choosing m_{i+1} , $\tilde{F}_{CBC}(m_1, \ldots, m_i) \oplus m_{i+1} \notin \mathcal{M}(M_1, \ldots, M_t)$ with overwhelming probability. Then we argue inductively for each $i < j \le \ell$,

$$\tilde{F}_{CBC}(m_1,\ldots,m_j) = f(\tilde{F}_{CBC}(m_1,\ldots,m_{j-1}) \oplus m_j)$$

is a fresh sample, which does not collide with any previous value with overwhelming probability, and f is not called on $\tilde{F}_{CBC}(m_1, \ldots, m_j) \oplus m_j$ with overwhelming probability. $(A_{t+1} \Longrightarrow C_{t+1})$ Let $M = (m_1, \ldots, m_\ell)$ be the t+1-th query. A_{t+1} and the prefix-free requirement imply that $\tilde{F}_{CBC}(m_1, \ldots, m_{\ell-1}) \oplus m_\ell$ is not in $C(M_1, \ldots, M_t)$. Thus the output $\tilde{F}_{CBC}(M_{t+1})$ is a fresh sample even conditioning on all the adversary's knowledge.

Part B. Since E is a prefix-free encoding, the MAC scheme only calls $F_{\text{CBC}}(k,\cdot)$ on inputs among which no one is the prefix of another. Therefore, $F_{\text{CBC}}(k,\cdot)$ can be replaced by a random function $f:\{0,1\}^* \to \{0,1\}^{\lambda}$. Formally, define another MAC scheme $\widetilde{\Pi} = (\widetilde{\mathsf{Gen}}, \widetilde{\mathsf{MAC}}, \widetilde{\mathsf{Verify}})$ as

- Gen samples a random function f.
- $\widetilde{\mathsf{MAC}}(f,m) = f(E(m)).$
- Verify is canonical.

Then

$$\left|\Pr[\mathsf{Macsforge}_{\mathcal{A},\Pi}(1^{\lambda}) = 1] - \Pr[\mathsf{Macsforge}_{\mathcal{A},\widetilde{\Pi}}(1^{\lambda}) = 1]\right| \leq \operatorname{negl}(\lambda)$$

because $F_{\rm CBC}$ is a prefix-free PRF.

To completes the proof, we argue that $\Pr[\mathsf{Macsforge}_{\mathcal{A},\widetilde{\Pi}}(1^{\lambda})=1]$ is negligible. To forge the tag of a message m, the adversary has to guess f(E(m)) correctly, the probability is $\frac{1}{2^{\lambda}}$ since f is a random function.

Problem 4. Answer provided by George Ma

The scheme does not satisfy unforgeability, since any λ -bit string is a valid ciphertext.

We now prove the scheme is CCA2-secure. Let $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$ and $\Pi = (\mathsf{Gen}, \mathsf{Enc}, \mathsf{Dec})$, where Enc and Dec are the same as Enc and Dec , except that we replace F_k with a random permutation π . Let E denote the set of random strings used to answer the attack's encryption-oracle queries, and let D denote the set of n/2-bit suffixes in the answers to the attacker's decryption-oracle queries. Let \mathcal{A} be an adversary and let $q(\cdot)$ be a polynomial upper-bounding the running-time of \mathcal{A} . We claim that:

$$\Pr[\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A},\widetilde{\Pi}}(\lambda) = 1] \leq \frac{1}{2} + \frac{2q(\lambda)}{2^{\lambda/2}}.$$

Let r_c denote the random string used to generate the challenge ciphertext $c = \pi(m \parallel r)$. There are two cases:

- 1. The value r_c is equal to some element in $E \cup D$. In this case, \mathcal{A} can know which message was encrypted, but the probability of this event occurring is upper-bound by $2q(\lambda)/2^{\lambda/2}$ (this is obtained by applying the union bound).
- 2. The value r_c is not equal to any of the elements in $E \cup D$. In this case, \mathcal{A} learns nothing about the plaintext because the challenge ciphertext is a uniform string (subject to being distinct from all other ciphertexts).

Let Repeat denote the event that r_c is equal to some element in $E \cup D$. As just discussed, the probability of Repeat is at most $2q(\lambda)/2^{\lambda/2}$, and the probability that \mathcal{A} succeeds in $\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A}.\widetilde{\Pi}}$ if Repeat does not occur is exactly 1/2. Therefore:

$$\begin{split} &\Pr[\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A},\widetilde{\Pi}}(\lambda) = 1] \\ &= \Pr[\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A},\widetilde{\Pi}}(\lambda) = 1 \land \mathsf{Repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A},\widetilde{\Pi}}(\lambda) = 1 \land \overline{\mathsf{Repeat}}] \\ &\leq \Pr[\mathsf{Repeat}] + \Pr[\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A},\widetilde{\Pi}}(\lambda) = 1 \mid \overline{\mathsf{Repeat}}] \\ &\leq \frac{2q(\lambda)}{2^{\lambda/2}} + \frac{1}{2}, \end{split}$$

proving our claim. As in our textbook, we can construct a distinguisher \mathcal{D} that determines whether its oracle is pseudorandom or random, by emulating experiment $\mathsf{PrivK}^{\mathsf{cca2}}$ for \mathcal{A} and generating a random bit b for \mathcal{A} to guess. We have $\Pr[\mathcal{D}^{F_k(\cdot)}(1^{\lambda}) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A},\widetilde{\Pi}}(\lambda) = 1]$ and $\Pr[\mathcal{D}^{\pi(\cdot)}(1^{\lambda}) = 1] = \Pr[\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A},\widetilde{\Pi}} = 1]$. Pseudorandomness of F_k implies that

$$\left|\Pr\left[\mathcal{D}^{F_k(\cdot)}(1^{\lambda})=1\right]-\Pr\left[\mathcal{D}^{\pi(\cdot)}(1^{\lambda})=1\right]\right|\leq \operatorname{negl}(\lambda).$$

Combining this with the above claim shows that

$$\Pr\left[\mathsf{PrivK}^{\mathsf{cca2}}_{\mathcal{A},\Pi}(\lambda) = 1\right] \leq \frac{1}{2} + \frac{2q(\lambda)}{2^{\lambda/2}} + \mathrm{negl}(\lambda),$$

thus we conclude that Π is CCA2-secure.

Problem 5.

Part A.

$$H_1(k_1, H_2(k_2, m_0)) = H_1(k_1, H_2(k_2, m_1))$$

Then either $H_2(k_2, m_0) = H_2(k_2, m_1)$, or $H_1(k_1, m'_0) = H_1(k_1, m'_1)$, here $m'_0 = H_2(k_2, m_0)$, $m'_1 = H_2(k_2, m_1)$, $m'_0 \neq m'_1$.

$$\Pr[H_1(k_1, H_2(k_2, m_0)) = H_1(k_1, H_2(k_2, m_1))]$$

$$\leq \Pr[H_2(k_2, m_0) = H_2(k_2, m_1)] + \Pr[H_1(k_1, m_0') = H_1(k_1, m_1')]$$

$$\leq \varepsilon_1 + \varepsilon_2$$

Part B. If $\delta \neq 0$, let $m'_0 = H_2(k_2, m_0)$, $m'_1 = H_2(k_2, m_1)$. $H_1(k_1, m'_0) - H_1(k_1, m'_1) = \delta$ implies $m'_0 \neq m'_1$,

$$\Pr[H_1(k_1, H_2(k_2, m_0)) - H_1(k_1, H_2(k_2, m_1)) = \delta]$$

=
$$\Pr[H_1(k_1, m'_0) - H_1(k_1, m'_1) = \delta] \le \varepsilon_2$$

If $\delta=0$ then either $H_2(k_2,m_0)=H_2(k_2,m_1)$, or $H_1(k_1,m_0')=H_1(k_1,m_1')$, here $m_0'=H_2(k_2,m_0),\ m_1'=H_2(k_2,m_1),\ m_0'\neq m_1'$. Using the result in part A,

$$\Pr[H_1(k_1, H_2(k_2, m_0)) - H_1(k_1, H_2(k_2, m_1)) = 0] \le \varepsilon_1 + \varepsilon_2$$