Problem 1.

Denote by A, B, C, D, E, F, G the intermediate values.

The distinguisher arbitrarily picks C, D and $\Delta \neq 0$, computes E, Δ' from

$$E = C \oplus \mathcal{O}_3(D), \qquad E \oplus \Delta' = C \oplus \mathcal{O}_3(D \oplus \Delta).$$

As the consequence,

$$E \oplus \Delta' = (C \oplus \Delta') \oplus \mathcal{O}_3(D), \qquad E = (C \oplus \Delta') \oplus \mathcal{O}_3(D \oplus \Delta).$$

Therefore, we can consider 4 evaluations of the Feistel network, where the three intermediate values are $C \oplus \alpha \Delta'$, $D \oplus (\alpha \oplus \beta)\Delta$, $E \oplus \beta \Delta'$ respectively

Let $(A_{\alpha,\beta}, B_{\alpha,\beta})$ and $(F_{\alpha,\beta}, G_{\alpha,\beta})$ denote the corresponding input and output for each $\alpha, \beta \in \{0, 1\}$. It always holds that

$$\bigoplus_{\alpha,\beta\in\{0,1\}} B_{\alpha,\beta} = 0, \qquad \bigoplus_{\alpha,\beta\in\{0,1\}} F_{\alpha,\beta} = 0.$$

But in the random permutation (RP) model, it is hard to find such four input/output pairs. Thus it is impossible to construct an efficient simulator in the ideal model.

Problem 2.

Part A. We construct an algorithm to compute g^{xy} given $\{g^x, g^y\}$ and the discription of G. First, compute |G| and give its standard factorization, i.e. $|G| = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$. Becasuse g is the generator of G, thus it suffices to compute $xy \pmod{|G|}$. Further, by CRT, it suffices for us to compute $xy \pmod{p_i^{\alpha_i}}$ for every $i \in \{1, \ldots k\}$ (by $|G| \leq 2^{\text{poly}(\lambda)}$) we know $k \leq \text{poly}(\lambda)$). Suppose that

$$x \pmod{p_i^{\alpha_i}} = x_0 + y_1 p_i + \dots + x_{\alpha_i - 1} p_i^{\alpha_i - 1},$$

$$y \pmod{p_i^{\alpha_i}} = y_0 + y_1 p_i + \dots + y_{\alpha_i - 1} p_i^{\alpha_i - 1},$$

where

$$x_0, x_1, \dots, x_{\alpha_i - 1}, y_0, y_1, \dots, y_{\alpha_i - 1} \in \mathbb{Z}_{p_i}.$$

Now consider the group generated by $g^{p_1^{\alpha_1-1}\dots p_k^{\alpha_k}}$. It is a subgroup of G of order p_1 , and $(g^x)^{p_1^{\alpha_1-1}\dots p_k^{\alpha_k}}=(g^{p_1^{\alpha_1-1}\dots p_k^{\alpha_k}})^{x_0}$ lies in this subgroup. Given that $p_i\leq \operatorname{poly}(\lambda)$, we can simply enumertate $0,1,\dots,p_i-1$ to find x_0 . Now we can get g^{x-x_0} , and $(g^{x-x_0})^{p_1^{\alpha_1-2}\dots p_k^{\alpha_k}}=(g^{p_1^{\alpha_1-2}\dots p_k^{\alpha_k}})^{x_1}$ lies in a subgroup of order p_i . Similarly by enumerating we get x_1 . Keep doing this we can get all $x_0,\dots,x_{\alpha_{i-1}}$ and thus get x (mod $p_i^{\alpha_i}$). Similarly we can get y (mod $p_i^{\alpha_i}$). By simply multiplying them we get xy (mod $p_i^{\alpha_i}$). In this way we break the computational DH assumption.

Part B. Assume that $|G| = p^{\alpha}q$, where $p \leq \text{poly}(\lambda)$. We have shown in part A that given g^x and g^y , $xy \pmod{p^{\alpha}}$ can be computed in polynomial time. Note that for a random $z \stackrel{\$}{\leftarrow} \mathbb{Z}_{|G|}$, $z \pmod{p^{\alpha}}$ is also uniformly random in $\mathbb{Z}_{p^{\alpha}}$.

Now, for an adversary equiped with the description of group G and $\{g^x, g^y, g^z\}$, where z is either uniformly random in $\mathbb{Z}_{|G|}$ or z = xy. It can simply compute $z \pmod{p^{\alpha}}$ and $xy \pmod{p^{\alpha}}$. If they are identical then output 0 (means $z \leftarrow \mathbb{Z}_{|G|}$), else output 1 (means z = xy). This brings out an advantage of $1 - \frac{1}{p^{\alpha}}$.

Problem 3.

Start with the vector DDH assumption.

$$(g, g^a, g^{b_1}, \dots, g^{b_w}, g^{ab_1}, \dots, g^{ab_w}) \approx_c (g, g^a, g^{b_1}, \dots, g^{b_w}, g^{c_1}, \dots, g^{c_w}).$$

Intuitively, the vector DDH assumption is implied by the DDH assumption because

$$\left(g, g^{a}, g^{b_{1}}, \dots, g^{b_{w}}, g^{ab_{1}}, \dots, g^{ab_{w}}\right)$$

$$\approx_{c} \left(g, g^{a}, g^{b_{1}}, \dots, g^{b_{w}}, g^{c_{1}}, g^{ab_{2}}, \dots, g^{ab_{w}}\right)$$

$$\vdots$$

$$\approx_{c} \left(g, g^{a}, g^{b_{1}}, \dots, g^{b_{w}}, g^{c_{1}}, \dots, g^{c_{j}}, g^{ab_{j+1}}, \dots, g^{ab_{w}}\right)$$

$$\vdots$$

$$\approx_{c} \left(g, g^{a}, g^{b_{1}}, \dots, g^{b_{w}}, g^{c_{1}}, \dots, g^{c_{w}}\right) .$$

And the vector DDH assumption implies the matrix DDH assumption because

$$\left(g,g\begin{bmatrix}a_1\\\vdots\\a_h\end{bmatrix},g\begin{bmatrix}b_1\\\vdots\\b_w\end{bmatrix},g\begin{bmatrix}a_1b_1&\cdots&a_1b_w\\\vdots&\ddots&\vdots\\a_hb_1&\cdots&a_hb_w\end{bmatrix}\right)\underset{\approx_c}{\approx_c} \left(g,g\begin{bmatrix}a_1\\\vdots\\a_h\end{bmatrix},g\begin{bmatrix}b_1\\\vdots\\b_w\end{bmatrix},g\begin{bmatrix}c_{1,1}&\cdots&c_{1,w}\\a_2b_1&\cdots&a_2b_w\\\vdots&\ddots&\vdots\\a_hb_1&\cdots&a_hb_w\end{bmatrix}\right)\underset{\approx_c}{\approx_c} \left(g,g\begin{bmatrix}a_1\\\vdots\\a_h\end{bmatrix},g\begin{bmatrix}b_1\\\vdots\\a_h\end{bmatrix},g\begin{bmatrix}c_{1,1}&\cdots&c_{1,w}\\\vdots&\ddots&\vdots\\c_{i,1}&\cdots&c_{i,w}\\a_{i+1}b_1&\cdots&a_{i+1}b_w\\\vdots&\ddots&\vdots\\a_hb_1&\cdots&a_hb_w\end{bmatrix}\right)\underset{\approx_c}{\approx_c} \left(g,g\begin{bmatrix}a_1\\\vdots\\a_h\end{bmatrix},g\begin{bmatrix}b_1\\\vdots\\b_w\end{bmatrix},g\begin{bmatrix}c_{1,1}&\cdots&c_{1,w}\\\vdots&\ddots&\vdots\\c_{h,1}&\cdots&c_{h,w}\end{bmatrix}\right).$$

This intuition can be formalized as follows.

Assume \mathcal{D}_V is a distinguisher for the vector DDH problem. Construct a distinguisher \mathcal{D} for the DDH problem.

$$\mathcal{D}(g, x, y, z)$$
Sample random $j^* \in \{1, \dots, w\}$.

For each $j \in \{1, \dots, w\} \setminus \{j^*\}$, sample $b_j \leftarrow \mathbb{Z}_q$

For each $j \in \{1, \dots, j^* - 1\}$, sample $c_j \leftarrow \mathbb{Z}_q$

Run $\mathcal{D}_V(g, x, g^{b_1}, \dots, g^{b_{j^*-1}}, y, g^{b_{j^*+1}}, \dots, g^{b_w}, g^{c_1}, \dots, g^{c_{j^*-1}}, z, x^{b_{j^*+1}}, \dots, x^{b_w})$
and output what \mathcal{D}_V outputs.

The distinguisher \mathcal{D} formalizes the hybrid argument. In particular, for random a, b, c, the execution of $\mathcal{D}(g, g^a, g^b, g^{ab})$ conditioning on $j^* = j$ is exactly the same as the execu-

tion of $\mathcal{D}(g, g^a, g^b, g^c)$ conditioning on $j^* = j - 1$. Thus

$$\Pr[\mathcal{D}(g, g^{a}, g^{b}, g^{ab})] - \Pr[\mathcal{D}(g, g^{a}, g^{b}, g^{c})] \\
= \frac{1}{w} \sum_{j=1}^{w} \Pr[\mathcal{D}(g, g^{a}, g^{b}, g^{ab}) \mid j^{*} = j] - \frac{1}{w} \sum_{j=1}^{w} \Pr[\mathcal{D}(g, g^{a}, g^{b}, g^{c}) \mid j^{*} = j] \\
= \frac{1}{w} \left(\Pr[\mathcal{D}(g, g^{a}, g^{b}, g^{ab}) \mid j^{*} = 1] - \Pr[\mathcal{D}(g, g^{a}, g^{b}, g^{c}) \mid j^{*} = w] \right) \\
= \frac{1}{w} \left(\Pr[\mathcal{D}_{V}(g^{b_{1}}, \dots, g^{b_{w}}, g^{ab_{1}}, \dots, g^{ab_{w}})] - \Pr[\mathcal{D}_{V}(g^{b_{1}}, \dots, g^{b_{w}}, g^{c_{1}}, \dots, g^{c_{w}})] \right).$$

So the DDH assumption implies the vector DDH assumption.

Similarly, assume \mathcal{D}_M is a distinguisher for the matrix DDH problem. We can construct a distinguisher \mathcal{D}_V for the vector DDH problem as

$$\mathcal{D}_{V}(g, x, y_{1}, \dots, y_{w}, z_{1}, \dots, z_{w})$$
Sample random $i^{*} \in \{1, \dots, h\}$.

For each $i \in \{1, \dots, h\} \setminus \{i^{*}\}$, sample $a_{i} \leftarrow \mathbb{Z}_{q}$

For each $i \in \{1, \dots, i^{*} - 1\}$, sample $c_{i,1}, \dots, c_{i,w} \leftarrow \mathbb{Z}_{q}$

$$\begin{bmatrix} g^{a_{1}} \\ \vdots \\ g^{a_{i^{*}-1}} \\ x \\ g^{a_{i^{*}+1}} \\ \vdots \\ g^{a_{h}} \end{bmatrix}, \begin{bmatrix} y_{1} \\ \vdots \\ y_{w} \end{bmatrix}, \begin{bmatrix} g^{c_{1,1}} & \cdots & g^{c_{1,w}} \\ \vdots & \ddots & \vdots \\ g^{c_{i^{*}-1,1}} & \cdots & g^{c_{i^{*}-1,w}} \\ z_{1} & \cdots & z_{w} \\ y_{1}^{a_{i^{*}+1}} & \cdots & y_{w}^{a_{i^{*}+1}} \\ \vdots & \ddots & \vdots \\ y_{1}^{a_{h}} & \cdots & y_{w}^{a_{h}} \end{bmatrix}$$
 and output what \mathcal{D}_{M} outputs.

The same hybrid argument shows that the advantage of \mathcal{D}_V solving the vector DDH problem (comparing to the random guess) is $\frac{1}{h}$ of the advantage of \mathcal{D}_M solving the matrix DDH problem. So the vector DDH assumption implies the matrix DDH assumption.

Problem 4.

Part A. Construct $\tilde{\mathcal{B}}$ as follows:

- On input (G, g, g^x, g^y) , sample $a, c \stackrel{\$}{\leftarrow} \mathbb{Z}^*_{|G|}, b, d \stackrel{\$}{\leftarrow} \mathbb{Z}_{|G|}$ uniformly.
- Call $\mathcal{A}(G, g, (g^x)^a \cdot g^b, (g^y)^c \cdot g^d)$ and obtain \mathcal{A} 's output h.
- Return $\left(\frac{h}{g^{xad} \cdot g^{ycb} \cdot g^{bd}}\right)^{1/ac}$.

Since ax + b, cy + d are uniform in $\mathbb{Z}_{|G|} \times \mathbb{Z}_{|G|}$, $h = g^{(ax+b)(cy+d)}$ holds and $\tilde{\mathcal{B}}$ returns g^{xy} with probability at least $1/\operatorname{poly}(\lambda)$.

To amplify the success probability to 99%, notice that when $h \neq g^{(ax+b)(cy+d)}$, the output of $\tilde{\mathcal{B}}$ is uniformly random in G. Hence \mathcal{B} need only run poly(λ) many $\tilde{\mathcal{B}}$'s independently then take the majority.

Part B.

 $\mathbf{CDH} \Rightarrow \mathbf{Square} \ \mathbf{CDH}$ Assume adversary \mathcal{A} breaks the CDH assumption, square CDH (G,g,g^x) can be solved by

- 1. Sample $r \stackrel{\$}{\leftarrow} \mathbb{Z}_{|G|}$.
- 2. Query $h \leftarrow \mathcal{A}(G, g, g^x, g^x \cdot g^r)$.
- 3. Return $h/(g^x)^r$.

Square CDH \Leftrightarrow **Inverse CDH** For adversary \mathcal{A} against square CDH, an adversary taking as input (G, g, g^x) need only output $\mathcal{A}(G, g^x, g)$ to break inverse CDH. Similarly if \mathcal{A} breaks inverse CDH, $\mathcal{A}(G, g^x, g)$ will output result to square CDH (G, g, g^x) with non-negligible probability.

Square + Inverse CDH \Rightarrow Division CDH If $\mathcal{A}_1, \mathcal{A}_2$ breaks square CDH and inverse CDH respectively, one can construct adversary breaking division CDH on input (G, g, g^x, g^y) by

- 1. $h_0 \leftarrow \mathcal{A}_2(G, g, g^y)$.
- 2. $h_1 \leftarrow \mathcal{A}_1(G, g, h_0 \cdot g^x), h_2 \leftarrow \mathcal{A}_1(G, g, h_0), h_3 \leftarrow \mathcal{A}_1(G, g, g^x).$
- 3. Return $\left(\frac{h_1}{h_2 h_3}\right)^{(|G|+1)/2}$.

With high probability, $h_0 = g^{y^{-1}}, h_1 = g^{x^2 + 2x/y + y^{-2}}$.

Division CDH \Rightarrow **CDH** On input (G, g, g^x, g^y) , call division CDH adversary \mathcal{A} twice to obtain $h_0 \leftarrow \mathcal{A}(G, g, g^x, g^y)$ and $h_1 \leftarrow \mathcal{A}(G, g^x, (g^x)^r, h_0)$ for $r \overset{\$}{\leftarrow} \mathbb{Z}^*_{|G|}$. Output $h_1^{1/r}$ finally.

Problem 5.

Part A. Because p = 2p' + 1, q = 2q' + 1 are safe primes, $\varphi(N) = 4p'q'$, for all $i \in [m]$, $\gcd(\varphi(N), e_i) = 1$ holds. Using extended Euclidean algorithm, $a \in \mathbb{Z}_{\varphi(N)}$ can be found in polynomial time such that

$$ae_i = 1 \pmod{\varphi(N)}$$
.

Hence we know that if $x^{e_i} = s \pmod{N}$, then

$$x = x^{ae_i} = s^a \pmod{N}$$
.

This directly yields a polynomial time algorithm. On input (N, p, q, s, i), calculate f(k, i) as follows:

- 1. Calculate $\varphi(N) = (p-1)(q-1)$.
- 2. Find $a \leftarrow e_i^{-1} \pmod{\varphi(N)}$ using extended Euclidean algorithm.
- 3. Calculate $x \leftarrow s^a \pmod{N}$.
- 4. Output x.

Part B. Construct Eval as follows. On receiving input $((N, x_S), s, i)$ where $x_S^{\prod_{j \in S} e_j} = s$, Eval includes the following steps:

- 1. Calculate $b \leftarrow \prod_{i \in S, i \neq i} e_i$.
- 2. Calculate $x \leftarrow x_S^b \pmod{N}$.

It's obvious that Eval runs in polynomial time and outputs the correct f(k,i).

Part C. Proof by contradiction. If there exists a PPT adversary \mathcal{A} , which wins the given experiment with non-negligible probability p(n), we'll construct a PPT adversary \mathcal{A}' , who wins the strong RSA experiment with non-negligible probability, thus contradicts the RSA assumption.

In the construction, \mathcal{A}' calls \mathcal{A} and emulates the security experiment for \mathcal{A} . Concretely, given input (N, y), \mathcal{A} involves the following steps:

- 1. Calculate $e_1, \dots e_m$.
- 2. Call \mathcal{A} , and receive queries S_1, \dots, S_ℓ from \mathcal{A} .
- 3. Compute $S = \bigcup_{j=1}^{\ell} S_j$.
- 4. For each query S_j , calculate $r_j = \prod_{t \in (S-S_j)} e_t$, and give y^{r_j} to \mathcal{A} as response.
- 5. Receive the output (i, x) from A.
- 6. Find (u, v) such that $ue_i + v \cdot \prod_{t \in S} e_t = 1$ using extended Euclidean algorithm.
- 7. Calculate $z \leftarrow y^u x^v \pmod{N}$.

8. Output (z, e_i) .

Because m = poly(n), \mathcal{A}' runs in polynomial time. Next we show that with non-negligible probability, \mathcal{A}' finds (z, e_i) such that $z^{e_i} = y$.

We first analyze the emulation that \mathcal{A}' gives to \mathcal{A} . From the standpoint of \mathcal{A} , it is running exactly the same as when the k is $(N, p, q, y\Pi_{t \in S}e_t)$, where y is chosen uniformly in \mathbb{Z}_N^* . Therefore, with non-negligible probability p(n), \mathcal{A} outputs (i, x) such that

$$x^{e_i} = y^{\prod_{t \in S} e_t} \pmod{N}. \tag{1}$$

Because $i \notin S$, $\gcd(e_i, \prod_{t \in S} e_t) = 1$, therefore, with Euclidean algorithm, \mathcal{A}' succeeds in finding u, v. Remember that (u, v) is such pair that

$$ue_i + v \cdot \prod_{t \in S} e_t = 1. \tag{2}$$

Combining equation (1) and (2)

$$y = y^{ue_i + v} \prod_{t \in S} e_t = y^{ue_i} x^{ve_i} = (y^u x^v)^{e_i}.$$
 (3)

Equation (3) shows that $z^{e_i} = y$. This holds as long as x is correctly given by \mathcal{A} . Because \mathcal{A} succeeds with non-negligible probability, \mathcal{A}' also succeeds with non-negligible probability. This finishes our proof.

Remark: One should note that, if the queres in step 2 of the game in part C are queried by the adversary one-by-one, as opposed to all-at-once, the above reduction would not work (because adversary \mathcal{A}' cannot calculate S in step 3 and 4).

To fix this, it only needs to notice that $m = \text{poly}(\lambda)$. Thus adversary \mathcal{A}' can simply guess the index \mathcal{A} will output in step 5 is i_0 , and set S to be $\{1, \ldots, m\} - \{i_0\}$. If its guess is right, i.e. $i = i_0$, then \mathcal{A}' can run other step correctly and output z. In this way

$$\Pr[\mathcal{A}' \text{ breaks the strong RSA}] \ge \frac{1}{\operatorname{poly}(\lambda)} \Pr[\mathcal{A} \text{ wins the game in part C}].$$