
编码

参考答案

1. (10 分) 本题中, 信息熵 H 使用 2 作为底数. 令 PXY 为一个支撑有限 X × Y 上的联合分布. 令常
数 λ1, λ2 满足 λ1 > H(X|Y ), λ2 > H(Y |X), λ1 + λ2 > H(X,Y ).

(PXY )
n

E1

E2

D

X n

Yn

{0, 1}λ1n

{0, 1}λ2n

(X × Y)n

(1) 请构造两个压缩函数 E1 : X n → {0, 1}⌊λ1n⌋, E2 : X n → {0, 1}⌊λ2n⌋, 和一个解压缩函数
D : {0, 1}⌊λ1n⌋+⌊λ2n⌋ → (X × Y)n, 并证明

Pr
((X1,Y1),...,(Xn,Yn))∼(PXY )n

[
D(E1(X1, . . . , Xn), E2(Y1, . . . , Yn)) ̸= ((X1, Y1), . . . , (Xn, Yn))

]
≤ 2−Θ(n).

(2) 如果改变参数, 满足如下条件之一: a) λ1 < H(X|Y ), b) λ2 < H(Y |X), c) λ1 + λ2 < H(X,Y ).
说明这时不能构造满足前一问要求的压缩函数和解压缩函数.

解

(1) 随机选取 E1, E2, 然后我们证明 E1, E2 大概率是符合要求的压缩函数.

用 X1:n, Y1:n 分别表示 (X1, . . . , Xn), (Y1, . . . , Yn). 存在一个与 n 无关的实数 δ > 0 使得

λ1 > H(X|Y ) + 2δ, λ2 > H(Y |X) + 2δ, λ1 + λ2 > H(X,Y ) + 2δ. 根据 Chernoff bound（或
Sanov Theorem）

Pr[− log(Pn
XY (X1:n, Y1:n)) ≥ n(H(X,Y ) + δ)] ≤ 2−Θ(n),

Pr[− log(Pn
X|Y (X1:n|Y1:n)) ≥ n(H(X|Y ) + δ)] ≤ 2−Θ(n),

Pr[− log(Pn
Y |X(Y1:n|X1:n)) ≥ n(H(Y |X) + δ)] ≤ 2−Θ(n).

据此我们定义集合 Dn

Dn :=


(x1, . . . , xn,

y1, . . . , yn)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

n∑
i=1

− log(PXY (xi, yi)) = − log(Pn
XY (x1:n, y1:n)) ≤ n(H(X,Y ) + δ)

n∑
i=1

− log(PX|Y (xi|yi)) = − log(Pn
X|Y (x1:n|y1:n)) ≤ n(H(X|Y ) + δ)

n∑
i=1

− log(PY |X(yi|xi)) = − log(Pn
Y |X(y1:n|x1:n)) ≤ n(H(Y |X) + δ)


从 Pn

XY 中采样得到的 X1:n, Y1:n 以 1− 2Θ(n) 的概率落在 Dn 当中. 我们定义解压缩函数 D 为

D(c1, c2) = (x1, . . . , xn, y1, . . . , yn) 如果存在唯一的(x1, . . . , xn, y1, . . . , yn) ∈ Dn

满足E1(x1, . . . , xn) = c1 ∧ E2(y1, . . . , yn) = c2.
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这个解压缩函数并不是最优的, 但是方便分析.

对于任何 (x1:n, y1:n) ∈ Dn, 其可以正确被解压, 即 D(E1((x1:n), E2(y1:n))) = (x1:n, y1:n), 当且
仅当没有另一个 (x′

1:n, y
′
1:n) ∈ Dn 被编码到同样的 (c1, c2). 这个概率（随机性来源于 E1, E2）

可以用 union bound 估计

Pr[D(E1((x1:n), E2(y1:n))) ̸= (x1:n, y1:n)]

≤
∑

(x′
1:n,y

′
1:n)∈Dn

(x′
1:n,y

′
1:n) ̸=(x1:n,y1:n)

Pr[(E1(x
′
1:n), E2(y

′
1:n)) = (E1(x1:n), E2(y1:n))]

=
∑

(x′
1:n,y

′
1:n)∈Dn

x′
1:n ̸=x1:n∧y′

1:n ̸=y1:n

Pr[(E1(x
′
1:n), E2(y

′
1:n)) = (E1(x1:n), E2(y1:n))]

+
∑

(x′
1:n,y

′
1:n)∈Dn

x′
1:n=x1:n∧y′

1:n ̸=y1:n

Pr[E2(y
′
1:n) = E2(y1:n)] +

∑
(x′

1:n,y
′
1:n)∈Dn

x′
1:n ̸=x1:n∧y′

1:n=y1:n

Pr[E1(x
′
1:n) = E1(x1:n)]

=
∑

(x′
1:n,y

′
1:n)∈Dn

x′
1:n ̸=x1:n∧y′

1:n ̸=y1:n

2−(λ1+λ2)n +
∑

(x′
1:n,y

′
1:n)∈Dn

x′
1:n=x1:n∧y′

1:n ̸=y1:n

2−λ2n +
∑

(x′
1:n,y

′
1:n)∈Dn

x′
1:n ̸=x1:n∧y′

1:n=y1:n

2−λ1n.

注意到, Dn 的大小不是很大. 每一个 (x′
1:n, y

′
1:n) ∈ Dn 都满足

Pn
XY (x

′
1:n, y

′
1:n) ≥ 2−n(H(X,Y )+δ).

它们的概率之和小于等于 1, 因此 |Dn| ≤ 2n(H(X,Y )+δ). 类似地, 集合{
y′1:n

∣∣∣ (x1:n, y
′
1:n) ∈ Dn

}
的大小也不是很大. 其中的每一个 y′1:n 都满足

Pn
Y |X(y′1:n|x1:n) ≥ 2−n(H(Y |X)+δ).

因为概率只和不超过 1, 所以满足条件的 y′1:n 不超过 2n(H(Y |X)+δ) 个. 对称地, 集合{
x′
1:n

∣∣∣ (x′
1:n, y1:n) ∈ Dn

}
的大小不超过 2n(H(X|Y )+δ). 回到之前 union bound 的估计,

Pr[D(E1((x1:n), E2(y1:n))) ̸= (x1:n, y1:n)]

=
∑

(x′
1:n,y

′
1:n)∈Dn

x′
1:n ̸=x1:n∧y′

1:n ̸=y1:n

2−(λ1+λ2)n +
∑

(x′
1:n,y

′
1:n)∈Dn

x′
1:n=x1:n∧y′

1:n ̸=y1:n

2−λ2n +
∑

(x′
1:n,y

′
1:n)∈Dn

x′
1:n ̸=x1:n∧y′

1:n=y1:n

2−λ1n

≤ 2n(H(X,Y )+δ)−(λ1+λ2)n + 2−n(H(Y |X)+δ)−λ2n + 2n(H(X|Y )+δ)−λ1n

≤ 3 · 2−δn.
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综合上面几条, 正确解压缩的概率很高

Pr
(X1:n,Y1:n)∼(PXY )n

[
D(E1(X1:n), E2(Y1:n)) = (X1:n, Y1:n)

]
= Pr

(X1:n,Y1:n)∼(PXY )n

[
D(E1(X1:n), E2(Y1:n)) = (X1:n, Y1:n)

∣∣∣ (X1:n, Y1:n) ∈ Dn

]
Pr[(X1:n, Y1:n) ∈ Dn]

≥ (1− 2−Θ(n))(1− 2−Θ(n)) = 1− 2−Θ(n).

(2) 如果 λ1 + λ2 < H(X,Y ), 一定不存在压缩函数 E1, E2 和解压缩函数 D 能大概率正确解压缩.
因为否则 E1, E2 可以合并成一个 Pn

XY 的压缩函数 E : (X × Y)n → {0, 1}(λ1+λ2)n, 可以被 D

大概率正确解压. 而我们知道这样的压缩函数是不存在的.

如果 λ1 < H(X|Y ), 一定不存在压缩函数 E1, E2 和解压缩函数 D 能大概率正确解压缩. 因
为否则 E1 就是一个压缩函数, 可以被 E2, D 合并成的一个利用旁信息的解压缩函数 D′ :

Yn × {0, 1}λ1n → X n 大概率正确解压缩. 而我们知道, 即使利用旁信息, 也不可能把 Pn
X 压缩

到 n(H(X|Y )− δ) 比特以内.

2. (10 分) [ℓ, n, d]-纠错码可以由其编码函数 E : {0, 1}n → {0, 1}ℓ 定义, 满足

∀distinct x, y ∈ {0, 1}n, ∆(E(x), E(y)) ≥ d.

这里 ∆ 表示汉明距离 (Hamming distance).

(1) 证明存在常数 α. 当 ℓ > 2d 且 ℓ ≥ 2n+ αd ln(ℓ/d) 时, 存在 [ℓ, n, d]-纠错码.
提示：可以使用不等式 log p·log(1−p)

log e
≤ h(p) ≤ log p·log(1−p)

log 2
. 其中 h(p) 表示 Bern(p) 的熵.

(2) 证明存在常数 α. 当 ℓ > 2d 且 ℓ ≥ n+ αd ln(ℓ/d) 时, 存在 [ℓ, n, d]-纠错码.

解

(1) 随机选取一个映射 E. 定义 Cx = E(x), 这样 Cx（x ∈ {0, 1}n）是相互独立的随机变量. 对任
意不同的 x, y ∈ {0, 1}n

Pr
[
∆(Cx, Cy) ≤ d

]
= Pr

Z∼Binom(ℓ, 12 )

[
Z ≤ d

]
≤ exp

(
−ℓ ·D

(d
ℓ

∥∥∥ 1

2

))
.

根据提示中的不等式,

D
(d
ℓ

∥∥∥ 1

2

)
= log 2− h

(d
ℓ

)
≥ log 2−

log(d
ℓ
) · log(1− d

ℓ
)

log 2

= log 2 + log2( ℓ
d
) · log(1− d

ℓ
) ≥ log 2− 2 log 2 · d

ℓ
log2( ℓ

d
).

其中还利用了 log(1− p) ≥ −2 log 2 · p 对任何 p ∈ [0, 1
2
]. 因此

Pr
[
∆(Cx, Cy) ≤ d

]
≤ 2−ℓ+4k log2(

ℓ
d
).

根据 union bound,

Pr
[
∃distinct x, y,∆(Cx, Cy) ≤ d

]
< 22n · 2−ℓ+2d log2(

ℓ
d
).
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只要 ℓ ≥ 2n+ 2d log2( ℓ
d
), 这个概率便严格小于 1. 说明存在 [ℓ, n, d]-纠错码.

(2) 随机选取一个线性映射 E : {0, 1}n → {0, 1}ℓ. 仍然定义 Cx = E(x), 这样 Cx（x ∈ {0, 1}n）是
两两独立的随机变量. 仍有对任意不同的 x, y ∈ {0, 1}n

Pr
[
∆(Cx, Cy) ≤ d

]
≤ 2−ℓ+2d log2(

ℓ
d
).

对于任意 x, y, 考虑 z = x⊕ y, 因为 E 是线性映射

∆(Cx, Cy) = ∥E(x)⊕ E(y)∥1 = ∥E(z)∥1 = ∥E(z)⊕ E(0)∥1 = ∆(Cz, C0).

这说明, 任意两个编码见的汉明距离大, 等价于零的编码与任何非零的编码之间的汉明距离大.

Pr
[
∃distinct x, y,∆(Cx, Cy) ≤ d

]
= Pr

[
∃z ̸= 0,∆(Cz, C0) ≤ d

]
< 2n · 2−ℓ+2d log2(

ℓ
d
).

只要 ℓ ≥ n+ 2d log2( ℓ
d
), 这个概率便严格小于 1. 说明存在 [ℓ, n, d]-纠错码.

3. (5 分) [ℓ, n, d]p-纠错码可以由其编码函数 E : Zn
p → Zℓ

p 定义, 满足

∀distinct x, y ∈ Zn
p , ∆(E(x), E(y)) ≥ d.

这里 ∆ 表示汉明距离 (Hamming distance).

(1) (0 分) 证明当 p 为素数幂且 p ≥ ℓ 时, 存在 [ℓ, n, ℓ− n+ 1]p-纠错码.

(2) 证明当 n+ d > ℓ+ 1 时, 不存在 [ℓ, n, d]p-纠错码.

解

(1) Reed-Solomon Code 即满足要求.

编码函数为, 首先定义 Fp 上多项式 fx(z) =
∑n−1

i=0 xiz
i,

E(x) = (fx(0), fx(1), . . . , fx(ℓ− 1))

其中将 0, . . . , ℓ− 1 解读为 Fp 上的 ℓ 个互异元素. 两个不同的 n− 1 次多项式至多在 n− 1 个

位置相等.

(2) 反证法: 假设存在 [ℓ, n, ℓ− n+ 2]p-纠错码.

只关注每个 codeword 的前 n− 1 位. 根据鸽笼原理, 一定有某两个 codeword 的前 n− 1 位相

同, 那么它们至多在 ℓ− n+ 1 个位置不同. 这与距离至少为 ℓ− n+ 1 的条件矛盾.

4. (15 分) 在有限空间 Ω 上有两个分布 P,Q. 区分器 D 是一个输入域为 Ω, 输出域为 {0, 1} 的算法
(更准确地说, 是 kernel). 我们希望让伪阳性概率 εFP 和伪阴性概率 εFN 尽量小.

εFP = Pr
X∼P

[D(X) → 1], εFN = Pr
X∼Q

[D(X) → 0].
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(1) 定义 likelihood ratio 为 L : Ω → [−∞,+∞], L(x) = log(Q(x)
P (x)

).
证明: 对任何区分器 D, 存在算法 D′ : [−∞,+∞] → {0, 1}, 使得

Pr
X∼P

[D(X) → 1] = Pr
X∼P

[D′(L(X)) → 1], Pr
X∼Q

[D(X) → 0] = Pr
X∼Q

[D′(L(X)) → 0].

(2) 证明: 为了最小化 εFP, εFN, 只须考虑如下的 likelihood ratio test 区分器 Dτ,θ

Dτ,θ(x) =


1, if L(x) > τ

Bern(θ), if L(x) = τ

0, if L(x) < τ

(3) 改为区分 Pn 和 Qn. 这时区分器是输入域为 Ωn, 输出域为 {0, 1} 的算法. 随着 n 的增长, 是
否可以让 εFP, εFN 分别以 exp(−nα), exp(−nβ) 的速度趋近于 0?
具体来说, 请确定以下区域的边界(α, β) ∈ R2

+

∣∣∣∣∣∣∣对任意充分大的 n, 存在区分器 D, 同时满足
Pr

X∼P
[D(X) → 1] ≤ exp(−nα)

Pr
X∼Q

[D(X) → 0] ≤ exp(−nβ)


为了统一记号, 对任意 λ ∈ [0, 1], 定义分布 Pλ 为 Pλ(x) ∝ (P (x))1−λ(Q(x))λ.
提示：上次作业第 2 题.

解

(1) 用随机变量 X 表示从 P 或 Q 的采样. 定义随机变量 Y = L(X). 这样就得到了两个联
合分布 PXY , QXY . 根据 Y 的定义, 有一个 (退化的) kernel PY |X 满足 PXY = PXPY |X ,
QXY = QXPY |X . 同样根据 Y 的定义, 对任意 x s.t. y = L(x) ∈ (−∞,+∞),

Px|y(x|y) =
P (x)∑

x′ s.t. L(x′)=y

P (x′)
=

eyP (x)∑
x′ s.t. L(x′)=y

eyP (x′)
=

Q(x)∑
x′ s.t. L(x′)=y

Q(x′)
= Qx|y(x|y)

因此可以定义 kernel PX|Y 使得 PXY = PY PX|Y , QXY = QY PX|Y .

令 D′(y) 首先从条件分布 PX|Y=y 采样 x, 再输出 D(x) 的结果. 这样当 y 采样自 PY (resp.
QY ) 时, x 的分布服从 PX (resp. QX). 便证明了题目.

区分从 P 或 Q 采样的随机变量 X 时, 能从 X 中计算出的量都被称为是统计量. 例如这里定
义的 Y 就是一个统计量. 而额外满足 PXY = PY PX|Y , QXY = QY PX|Y 的统计量被称为充分

统计量 (sufficient statistic), 因为它已经包括了区分 P,Q 的所有有用信息.

因此, 我们不妨改为区分 PY , QY . 等价地, 不妨假设 x = L(x) = log Q(x)
P (x)

.

(2) 假设 D 不是 LRT 区分器, 那么存在 α > β 使得

Q(α) > 0, P (β) > 0,

Pr[D(α) → 1] < 1, Pr[D(β) → 1] > 0.
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我们构造一个严格优于 D 的区分器 D′. 选择一个充分小的 ε > 0, 定义

Pr[D′(x) → 1] =


Pr[D(α) → 1] + εP (β), if x = α

Pr[D(β) → 1]− εP (α), if x = β

Pr[D(x) → 1], otherwise

于是

Pr
X∼P

[D′(x) → 1] = Pr
X∼P

[D(x) → 1] + P (α)εP (β)− P (β)εP (α) = Pr
X∼P

[D(x) → 1].

Pr
X∼Q

[D′(x) → 1] = Pr
X∼Q

[D(x) → 1] +Q(α)εP (β)−Q(β)εP (α)

= Pr
X∼Q

[D(x) → 1] +Q(α)εP (β)− eβP (β)εe−αQ(α) > Pr
X∼Q

[D(x) → 1].

也就是说, D′ 在不改变 εFP 的同时改善了 εFN.

(3) 因为已经证明 LRT 是最好的区分器, 只需考虑以下区分器的错误概率: D(x1, . . . , xn) = 1 iff∑
i xi > nτ , 其中 τ 是任意阈值. 这时

εFP = Pr
Xn∼Pn

[∑
i

Xi > nτ
]
, εFN = Pr

Xn∼Qn

[∑
i

Xi ≤ nτ
]
.

为了让错误概率不逼近 1, 阈值 τ 必须满足

E
X∼P

[X] ≤ τ ≤ E
X∼Q

[X]. (*)

根据上次作业, 我们可以用 Chernoff bound 证明

εFP = Pr
Xn∼Pn

[∑
i

Xi > nτ
]
≤ exp(−nD(P ∗∥P )).

这里 P ∗(x) ∝ exp(λx)P (x), 其中的参数 λ 由 EX∼P∗ [X] = τ 唯一确定. 注意到

P ∗(x) ∝ exp(λx)P (x) =
(Q(x)

P (x)

)λ

P (x) = Q(x)λP (x)1−λ.

所以 P ∗ = Pλ, 其中 λ 由 EX∼Pλ
[X] = τ 确定. 因为 EX∼Pλ

[X] 随 τ 单调增长, 且 τ 的取值在

(*) 中, 所以 λ ∈ [0, 1].

对称地, εFN ≤ exp(−nD(Pλ∥Q)), 其中 λ 由 EX∼Pλ
[X] = τ 确定.

对于任意 λ ∈ [0, 1], 区分器 D(x1, . . . , xn) = 1 iff
∑

i xi > nEX∼Pλ
[X] 可以实现

εFP = exp(−nD(Pλ∥P )), εFN = exp(−nD(Pλ∥Q)).

因此题目所求区域一定包含了曲线 (D(Pλ∥P ), D(Pλ∥Q))λ∈(0,1) 之下的部分.

同时, 根据前几问, 我们知道 LRT 是最优的. 根据上次作业, 我们知道 Chernoff bound 是足够
紧的. 因此曲线 (D(Pλ∥P ), D(Pλ∥Q))λ∈(0,1) 是题目所求区域的边界.
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