
马尔可夫链

参考答案

1. (6 分) 考虑一个有限状态空间 Ω 上不可约的（irreducible）马尔可夫核 P . 我们知道 P 存在唯一

的稳态分布（stationary distribution）π. 证明对于任意初始分布 µ

lim
n→∞

1

n

n∑
j=1

µP j = π.

解 定义另一个马尔可夫核 P̂ = 1
2
(P + I). 可以把 P̂ 理解为, 以 1/2 概率按 P 转移, 以 1/2 概

率保持在当前状态. πP̂ = 1
2
(πP + π) = π, 因此 π 也是 P̂ 的稳态分布.

对任意状态 x ∈ Ω, 都有 P̂ (x|x) ≥ 1/2 > 0, 这样的马尔可夫链被称作 lazy. 一个 lazy 的马尔可夫

链一定也无周期. 不可约且无周期的马尔可夫链一定收敛. 因此对任意初始分布 µ

lim
n→∞

µP̂n = π,

进而有

lim
n→∞

1

2n

2n−1∑
j=0

µP̂n = π.

为了证明题设, 我们只需证明

lim
n→∞

(
1

2n

2n−1∑
j=0

µP̂ j − 1

n

n−1∑
j=0

µP j

)
= 0. (*)

（这两者的相似有直观的解释: 一边是 P̂ 对应的马尔可夫链在前 2n 时刻的平均分布, 一边是 P 对

应的马尔可夫链在前 n 时刻的平均分布. 而懒惰的 P̂ 大致就是时间放慢两倍的 P .）

1

2n

2n−1∑
j=0

µP̂n =
1

2n

2n−1∑
j=0

µ
(1
2
P +

1

2
I
)j

=
1

2n

2n−1∑
i=0

µP i

2n−1∑
j=i

(
j

i

)
1

2j
=

1

n

2n−1∑
i=0

µP ici

其中 ci =
∑2n−1

j=i

(
j
i

)
1

2j+1 . 为了证明 (*), 我们希望对大部分 i < n, ci ≈ 1, 对大部分 i > n, ci ≈ 0.

我们注意到 ci 有其它含义. 考虑一列独立的随机变量 Z1, Z2, · · · ∼ Bern(1/2). 注意到(
j

i

)
1

2j+1
= Pr

[∑
k≤j

Zk = i ∧ Zj+1 = 1
]
= Pr

[
j 是满足

∑
k≤j+1

Zk > i 的最小整数
]

ci =

2n−1∑
j=i

(
j

i

)
1

2j+1
= Pr

[
满足

∑
k≤j+1

Zk > i 的最小整数 < 2n
]
= Pr

[2n−1∑
j=1

Zj > i
]

（这个关系并不是巧合. Zi 其实就表示了 P̂ 在第 i 时刻是否懒惰. 具体来说, 不妨令 X0, X1, X2, . . .

表示 P 的马尔可夫链, 不难验证 X̂i = X∑
j≤i Zi

是 P̂ 对应的马尔可夫链.）
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我们可以用 Chernoff bound 估计 ci. 令 ε = n−1/3, 那么由 Chernoff bound

ci ≥ 1−O(n−1/3) = 1− o(1) if i ≤ n(1− ε)

ci ≤ O(n−1/3) = o(1) if i ≥ n(1 + ε)

据此可以证明 (*)

1

2n

2n−1∑
j=0

µP̂n =
1

n

2n−1∑
i=0

µP ici

=
1

n

n−εn∑
i=0

µP ici +
1

n

n+εn−1∑
i=n−εn+1

µP ici +
1

n

2n−1∑
i=n+εn

µP ici

=
1

n

n−εn∑
i=0

µP i(1−O(n−1/3)) +O(n−1/3) +
1

n

2n−1∑
i=n+εn

µP i ·O(n−1/3)

=
1

n

n−εn∑
i=0

µP i +O(n−1/3)

=
1

n

n−1∑
i=0

µP i +O(n−1/3)

另一种解法: 参考下一题中的分解. 我们按 j mod T 把求和分成 T 类, 证明每一类都收敛, 从而整

个求和收敛（只要收敛就一定收敛到 π）. 每一类中的 Markov 核相当于 pass 到了 P T , 它在每个

Ωj 中都是不可约且无周期的 Markov 链, 从而收敛.

2. (4 分) 考虑大小为 n 的有限状态空间 Ω 上的一个不可约（irreducible）马尔可夫核 P , 令 π 是稳

态分布.

(1) 证明 P 只有一个特征值等于 1.

(2) 假设 P 有周期 T > 1. 这里 T = gcd{t : ∃x, P t(x|x) > 0}. 不难证明, 周期性说明状态空间可
以划分为 T 个非空子集 Ω0,Ω1, . . . ,ΩT−1 满足

∀x, y ∈ Ω, ∀j ∈ ZT , P (y|x) > 0 ∧ x ∈ Ωj =⇒ y ∈ Ωj+1.

证明 1 的所有 T 次根 e2πi
k
T（for k ∈ ZT）都是 P 的特征值.

解

(1) 课上已经证明 dim(P − I) = n− 1, 所以特征值为 1 的特征向量只有一维. 我们知道稳态分布

µ 就是这个特征向量.

如果要说明只有一个特征值是 1, 也就是要说明 1 的代数重数等于 1. 反证, 假设 1 的代数重数

大于 1. 那么 P 的 Jordan 标准型一定包括一个形如
1 1

1
. . .
. . . 1

1


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的子块. 因此, Jordan 分解中的基中有一个非零向量 ν 满足[
−ν−
−µ−

]
P =

[
1 1

1

][
−ν−
−µ−

]

只要选一个足够小的 ε, 就可以使得 µ+εν 每位非负, 于是可以正则化为一个概率分布 µ+εν
∥µ+εν∥1

.
于是

µ+ εν

∥µ+ εν∥1
P t =

(1 + tε)µ+ εν

∥µ+ εν∥1
也应该是一个分布. 但当 t 充分大时, 它不是分布.

(2) 对任意 k ∈ ZT , 构造 πk 为

πk(x) = e−2πi·jk/T · π(x) if x ∈ Ωj .

那么对任意 j ∈ ZT 和 y ∈ Ωj

(πkP )(y) =
∑

x∈Ωj−1

πk(x)P (y|x) = e−2πi·(j−1)k/T ·
∑

x∈Ωj−1

π(x)P (y|x)

= e−2πi·(j−1)k/T · π(y) = e2πi·k/T · πk(y).

所以 e2πi·k/T 是一个特征值.

另一种解法: 对 k ∈ ZT , 我们构造 (列) 特征向量 v, 对 j ∈ ZT , x ∈ Ωj , vx 恒为 e2πi·jk/T . 即

v =
∑
j

e2πi·jk/T1Ωj

由于
∑

y∈Ωj+1
P (y|x) = 1, ∀x ∈ Ωj , 我们有 P1Ωj+1

= 1Ωj
, 从而 Pv =

∑
j e

2πi·jk/TP1Ωj
=∑

j e
2πi·jk/T1Ωj−1

=
∑

j e
2πi·(j+1)k/T1Ωj

= e2πi·k/T v, 从而 v 是一个特征值为 e2πi·k/T 的特征向

量.

3. (6 分) 考虑 Z 上的随机游走. 马尔可夫核是

P (x+ 1|x) = p, P (x− 1|x) = 1− p

其中 p ∈ (0, 1) 是参数. 请计算这个马尔可夫链返回初始点的概率.

Pr[∃i > 0 such that Xi = X0].

解 不失一般性, 可以假定 X0 = 0, 然后考虑返回 0 点的概率

Pr0[∃i > 0 such that Xi = 0].

定义 v(j) 为如果马尔可夫链从状态 j 出发, 经过 0 点的概率

v(j) := Prj [∃i ≥ 0 such that Xi = 0].
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这里在 Pr 的下标规定 X0 的（退化）分布.

我们关心 v 的值. 显然 v(0) = 1. 对 j ̸= 0,

v(j) = Prj [∃i ≥ 0, Xi = 0] = pPrj [∃i ≥ 0, Xi = 0|X1 = j + 1]

+ (1− p)Prj [∃i ≥ 0, Xi = 0|X1 = j − 1] = p v(j + 1) + (1− p)v(j − 1).

对于 j ≥ 0, 数列 v(0), v(1), v(2), . . . 有简单的线性递推公式, 它们一定满足

v(j) =

αj + β, if p = 1
2

α( 1−p
p
)j + β, if p ̸= 1

2
其中 1−p

p
是特征方程 1 = px+ (1− p)/x 除了 1 之外的另一个根

其中 α, β 是待定常数. 这时分三种情况考虑,

• 如果 p = 1
2
: 因为 v(0) = 1 且 ∀j, v(j) ∈ [0, 1], 只能是 v(j) = 1.

• 如果 p < 1
2
: 这时 1−p

p
> 1. 因为 v(0) = 1 且 ∀j, v(j) ∈ [0, 1], 只能是 v(j) = 1.

• 如果 p > 1
2
: 这时 1−p

p
< 1. 根据 v(0) = 1 且 ∀j, v(j) ∈ [0, 1] 只能推出 v(j) = α( 1−p

p
)j+(1−α)

其中 α ∈ [0, 1]. 因此我们要额外证明 limj→+∞ v(j) = 0, 这样可以说明 v(j) = ( 1−p
p
)j .

v(j) = Prj [∃n ≥ 0, Xn = 0] ≤
∑
n≥0

Prj [Xn = 0] ≤
∑
n≥j

Prj [Xn ≤ j]

≤
∑
n≥j

exp
(
−n ·D

(1
2

∥∥ p
))

= e−Θ(j).

其中一步使用了 Chernoff bound.

综合三种情况, p v(1) = pmin(1, 1−p
p
) = min(p, 1− p). 对称地, (1− p) v(−1) = min(p, 1− p). 所以

Pr[∃i > 0, Xi = X0] = p v(1) + (1− p)v(−1) = 2min(p, 1− p).

另一种解法: 由第 4 题中的引理 1, 我们只需要计算 E[N ] =
∑

n≥1 Pr[X2n = X0]（N 和 E 的定

义也请参照那里）. Pr[X2n = X0] =
(
2n
n

)
(p(1 − p))n. 由生成函数

∑
n≥0

(
2n
n

)
xn = 1√

1−4x
代入

x = p(1− p), 可以得知 E[N ] = 1√
1−4p(1−p)

− 1 = 1
|1−2p| − 1, 从而 Pr[E] = 1− 1

1+E[N ]
= 1− |1− 2p|.

4. (6 分) 考虑 Zd 上的随机游走. 马尔可夫核是

P (y1, . . . , yd|x1, . . . , xd) =

1/3d, if ∀i, |yi − xi| ≤ 1

0, otherwise

这个马尔可夫核在各个维度上独立, 便于分析. 证明

Pr[∃i > 0 such that Xi = X0] =

1, if d = 2

1− Ω(1), if d > 2
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提示：考虑

E[number of i > 0 such that Xi = X0].

解 定义随机变量 N 和事件 E 为

N := number of i > 0 such that Xi = X0,

E := {∃i > 0 such that Xi = X0}.

引理 1. Pr[E] = 1 当且仅当 E[N ] < ∞. 当 Pr[E] < 1 时, 有 E[N ] = Pr[E]
1−Pr[E]

, 或言 Pr[E] = E[N ]
1+E[N ]

.

证明. 由于 N ≥ 0, E[N ] 一定存在（可能为 ∞）. 如果 E 未发生, 那么 N = 0, 因此 E[N ] =

E[N |E]Pr[E]. 现在 condition on E 发生, 我们记 i0 是最小的 i > 0 such that Xi = X0, 此时
N = 1 + (number of i > i0 such that Xi = X0). 由 Markov 链的无记忆性, E[number of i >

i0 such that Xi = X0|E] = E[N ]. 由于 N ≥ 0 以及期望线性性, 我们有 E[N ] = Pr[E](1 + E[N ]).
如果 Pr[E] = 1, E[N ] 只能为 ∞, 否则 E[N ] = Pr[E]

1−Pr[E]
是有限数.

由期望线性性, 我们有 E[N ] =
∑

n≥1 Pr[Xn = X0]. 设 pn 表示 d = 1 时的随机游走满足 Xn = X0

的概率, 由于每一维独立, 有 Pr[Xn = X0] = pdn. 在剩下的答案中, 我们要证明 pn = Θ(n−1/2). 这

说明, 当 d ≤ 2 时, E[N ] = ∞；当 d ≥ 3 时, E[N ] < ∞. 结合引理 1, 便得到题目要求的结论.

估计 pn 有多种办法, 下面我们展示一种完全初等的办法. 不失一般性, 可以假定 X0 = 0. 注意到给

定的马尔可夫核可以直观地理解为如下两步过程: 首先抛一个概率为 2/3 的硬币, 根据硬币结果决

定是否留在当前状态. 如果不留在当前状态, 那么以 50-50 的概率 +1 或 −1. 具体来说, 定义随机

变量 Zi = 1[Xi ̸= Xi−1]. 那么 Zi ∼ Bern(2/3). condition on Z1 + · · ·+ Zn = m, Xn 等于 m 个独

立随机的 ±1 的和, 因此 Pr[Xn = 0|Z1 + · · ·+ Zn = m] =
(

m
m/2

)
/2m（如果 m 是偶数）.

Pr[Xn = 0] =
∑
m

Pr[Xn = 0|Z1 + · · ·+ Zn = m]Pr[Z1 + · · ·+ Zn = m]

=
∑

even m

(
m

m/2

)
2m

Pr[Z1 + · · ·+ Zn = m] =
∑

even m>n/2

(
m

m/2

)
2m

Pr[Z1 + · · ·+ Zn = m] + 2−Ω(n). (*)

最后一步利用 Chernoff bound, m ≤ n/2 的可能性可以忽略.

引理 2. 对 k ≥ 1, 我们有 (
2k

k

) /
22k = Θ

(
1√
k

)
.

证明. 记 ak =
(
2k
k

)
2−2k, 展开得 ak = (1− 1

2k
)ak−1.

ln ak =
k∑

i=1

log
(
1− 1

2k

)
≤ −

k∑
i=1

1

2k
≤ −1

2
log k +常数.

因而 ak = O(k−1/2). 下界类似, 只需使用 ln(1− x) ≥ −x− x2 对 x ∈ [0, 1/2] 成立.
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下界也可以用二阶矩估计. 注意到 ak = Binom(2k, 1
2
)(k). 二项分布 Binom(2k, 1

2
) 的期望是 k, 方

差是 k/2. 根据 Chebyshev 不等式, 以至少 1/2 的概率落在 (k −
√
k, k +

√
k) 内. 我们又知道二项

分布中, 期望的概率最高. 所以 ak = Binom(2k, 1
2
)(k) ≥ 1/2

2
√
k
= Ω(k−1/2).

引理 2 实际在说, 存在常数 C > c > 0, 使得对任意 k > 1,(
2k

k

) /
22k ∈

[
c√
k
,
C√
k

]
.

回到 (*), 我们可以得到

Pr[Xn = 0] ≤ max
even m∈(n/2,n]

(
m

m/2

)
2m

+ 2−Ω(n) ≤ C√
n/2

+ 2−Ω(n) = O
( 1√

n

)
,

Pr[Xn = 0] ≥ max
even m∈[0,n]

(
m

m/2

)
2m

· Pr[Z1 + · · ·+ Zn is even] ≥ c√
n
· 1
3
= Ω

( 1√
n

)
.

5. (5 分) 对一个马尔可夫链 P , 用 π 表示它的一个稳态分布, 用 τ(ε) 表示它的混合时间.

τ(ε) = smallest t s.t. d(t) ≤ ε

d(t) = max
x

∆TV(P
t(x, ·), π)

证明, 对任意 ε > 0, τ(2ε2) ≤ 2τ(ε).

解 固定 ε, 记 τ = τ(ε).

用 coupling 方法证明题目. 对任意 x0, 构造 X0, Xτ , X2τ , Y0, Yτ , Y2τ , 使得 X0 = x0, Y0 ∼ π, 两边的

边缘分布都是马尔可夫链 (即 Pr[Yτ = yτ , Y2τ = y2τ |Y0 = y0] = P τ (y0, yτ )P
τ (yτ , y2τ ), 对 Xt 类似),

并且 Pr[X2τ ̸= Y2τ ] ≤ 2ε2.

因为 ∆TV(Xτ , Yτ ) = ∆TV(P
t(x0, ·), π) ≤ ε, 所以通过 coupling 可以令 Pr[Xτ = Yτ ] ≥ 1− ε.

如果 Xτ = Yτ , 可以让两个马尔可夫链保持相同, Pr[X2τ = Y2τ | Xτ = Yτ ] = 1.

如果 Xτ = x ̸= y = Yτ , 这时 X2τ , Y2τ 的条件分布分别是 P t(x, ·), P t(x, ·). 因为

∆TV(P
t(x, ·), P t(y, ·)) ≤ ∆TV(P

t(x, ·), π) + ∆TV(P
t(y, ·), π) ≤ 2ε,

可以通过 coupling 令 Pr[X2τ = Y2τ | Xτ = x, Yτ = y] ≥ 1− 2ε.

于是

Pr[X2τ ̸= Y2τ ] = Pr[X2τ ̸= Y2τ | Xτ ̸= Yτ ]Pr[Xτ ̸= Yτ ] ≤ 2ε2.

6. (10 分) 简单图 G 中有 n 个点, 最大度数记为 ∆. 用 C > 5∆ 种颜色对 G 随机点染色, 要求任意一
对相邻点的染色不同. 为了均匀采样一个随机染色, 我们使用 MCMC 方法. 马尔可夫核是:

• 假设当前染色为 f : V → C.

• 随机选取一个点 v ∈ C, 随机选取一个颜色 c ∈ C.
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• 如果 v 的邻居的颜色都不是 c, 就将 v 的染色修改为 c; 否则保持染色不变.

请估算混合时间 τ(ε), 给出一个尽量好的上界.

τ(ε) = smallest t s.t. d(t) ≤ ε

d(t) = max
µ

∆TV(µP
t, π)

注. 如果想用 coupling 分析 C > 2∆ 的情形, 建议用 St ⊆ V 表示 t 时刻 coupling 中两个染色一致

的点集. 考虑被 St 切的边 (一个端点在 St 中, 另一个端点在 St 外) 有怎样的影响.

注. 马尔可夫链可以优化为“随机选取一个 v 的邻居中未出现的颜色 c ∈ C”.

解 使用 coupling 分析, 定义马尔可夫链 {(Xt, Yt)}t≥0. 马尔可夫核是:

• 当前染色为 Xt−1, Yt−1.

• 随机选取一个点 v ∈ V . 在 v 以外的部分, 令 Xt 与 Xt−1 相同, 令 Yt 与 Yt−1 相同.

用 X = {Xt−1(u) | {u, v} ∈ E} 和 Y = {Yt−1(u) | {u, v} ∈ E} 分别表示 v 的邻居的颜色集合.

• 如果 Xt−1(v) ̸= Yt−1(v), 随机选取一个颜色 c ∈ C. 如果 c /∈ X , 就令 Xt(v) = c; 否则保持染

色不变. 如果 c /∈ Y , 就令 Yt(v) = c; 否则保持染色不变.

这样的话, Xt(v) = Yt(v) 的概率至少是
C − |X ∪ Y|

C
.

• 如果 Xt−1(v) = Yt−1(v). 从一个特定的分布采样 (c, c′). 边缘分布是均匀分布. 如果 c /∈ X , 就
令 Xt(v) = c; 否则保持染色不变. 如果 c′ /∈ X , 就令 Yt(v) = c′; 否则保持染色不变.

为了让 Xt(v) = Yt(v) 的概率尽量大, 需要适当地设置 (c, c′) 的分布. 不难做到,

Pr[c = c′ ∧ c /∈ X ∪ Y ] =
C − |X ∪ Y|

C
, Pr[c ∈ X ∧ c′ ∈ Y ] =

min(|X |, |Y|)
C

.

这样的话, Xt(v) = Yt(v) 的概率是
C − |X ∪ Y|+min(|X |, |Y|)

C
=

C −min(|X \ Y|, |Y \ X |)
C

.

根据提示, 定义 St = {v|Xt(v) = Yt(v)}. 定义 Nt = |St|.

考虑 Xt−1, Yt−1 到 Xt, Yt 的马尔可夫核的采样过程.

• 如果 Xt−1(v) ̸= Yt−1(v) (即 v /∈ St−1), 只要采样得到的颜色 c 不在 X ∪ Y 中, 那么 v 在两边

的颜色都会被更新到 c. 用 E(v, S) 表示 v 和 S 之间的边数. 那么

|X ∪ Y| ≤ E(v, St−1) + 2E(v, V \ St−1) ≤ 2∆− E(v, St−1).

于是 Xt(v) = Yt(v) 的概率至少是 C−2∆+E(v,St−1)
C

.

• 如果 Xt−1(v) = Yt−1(v) (即 v ∈ St−1), Xt(v) ̸= Yt(v) 的概率至多是

min(|X \ Y|, |Y \ X |)
C

≤ E(v, V \ St−1)

C
.
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观察上面的概率. 当 v /∈ St−1 时, v 与 St−1 的连边 “有益”; 当 v ∈ St−1 时, v 与 V \ St−1 的连边

“有害”. 因为 ∑
v/∈St−1

E(v, St−1) = E(V \ St−1, St−1) =
∑

v∈St−1

E(v, V \ St−1),

这两种作用恰好可以相互抵消.

具体来说, 给定 Xt−1, Yt−1 时,

E
[
Nt −Nt−1

∣∣∣ Xt−1, Yt−1

]
≥

∑
v/∈St−1

1

n

C − 2∆ + E(v, St−1)

C
−

∑
v∈St

1

n

E(v, V \ St−1)

C

=
∑

v/∈St−1

1

n

C − 2∆

C

=
n−Nt−1

n

C − 2∆

C
.

对两边同时求期望, 可以得到

E[Nt]− E[Nt−1] =
n− E[Nt−1]

n

C − 2∆

C
.

于是解得

E[Nt] = n−
(
1− C − 2∆

nC

)t

(n− E[N0]).

当 t ≥ log(ε/n)
log(1−C−2∆

nC )
≥ nC

C−2∆
log(n/ε) 时, E[Nt] ≥ n− ε, 根据 Markov bound,

Pr[Xt ̸= Yt] = Pr[Nt ̸= n] = Pr[Nt ≤ n− 1] ≤ ε.

上述分析不依赖于 X0, Y0 的分布. 只要令 X0 是任意染色, Y0 服从稳态分布 (均匀分布), 就得到

τ(ε) ≤ nC

C − 2∆
log(n/ε).
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