Induction and coinduction

Induction:

- construction from the basis
- the least solution X^* of an inequality: $f(X) \subseteq X$ (closure property)
- proof method: $f(Y) \subseteq Y \implies X^* \subseteq Y$: X^* has property Y.

Coinduction:

- destruction from the whole
- the greatest solution X^* of an inequality: $X \subseteq f(X)$
- proof method: $Y \subseteq f(Y) \implies Y \subseteq X^*$: Y has property X^* .

Actually, coinduction can be viewed as induction on the complement, let $Y = \overline{X}$, and let $g(Y) = \overline{f(\overline{Y})}$, then $X \subseteq f(X)$ can be reformalized as $g(Y) \subseteq Y$. The least solution of Y is the greatest solution of X for $X \subseteq f(X)$.

Examples

Defining the set of points that are reachable from a point w_0 in a model as the least solution of X such that $f(X) \subseteq X$ where:

$$f(X) = \{ w \mid w_0 \to w \} \cup \{ w \mid \exists v \in X : v \to w \}$$

Defining the set of points that have infinite descending chains in a model as the greatest solution of X such that $X \subseteq f(X)$ where:

$$f(X) = \{ w \mid \exists v \in X : w \to v \}$$

A modal μ -calculus formula: $\nu X. \diamondsuit X$ (where ν is the greatest fixed point operator) can thus define all the points that have infinite descending chains.

Induction and coinduction

To guarantee those least/greatest solutions do exist:

Lemma

Let $\mu = \bigcap \{X \mid f(X) \subseteq X\}$ and $\nu = \bigcup \{X \mid X \subseteq f(X)\}$. If f is a order-preserving (monotone) function $(X \subseteq Y) \implies f(X) \subseteq f(Y)$ then $f(\mu) \subseteq \mu$ and $\mu \subseteq f(\nu)$.

Based on this we can show:

Theorem (Knaster-Tarski, on power sets over W)

If f is a monotone function on subsets of U: $\mathcal{P}(W) \to \mathcal{P}(W)$ then

- μ is the least fixed point of f.
- \cdot ν is the greatest fixed point of f.

Moreover, we can reach μ and ν by (transfinite) iteration of f from \emptyset or W respectively (Kleene's fixed point theorem.)